Questa psicologa prova a spiegare i concetti complessi usando il sushi


Janelle Letzen è una ricercatrice in psicologia clinica presso la Johns Hopkins University. A gennaio di quest’anno, Letzen ha deciso di unire la scienza ad uno dei suoi hobby: l’arte del sushi. Usando spiegazioni brevi e vivaci, armata di avocado, riso, e alghe, tramite il suo account Instagram the_sushi_scientist, Janelle ci spiega argomenti e concetti complessi, che vanno dagli ambiti della neuroscienza alla geologia, come ha raccontato AtlasObscura.

Serving up some thalamus nigiri for this #tastytuesday! The thalamus is a structure positioned right above the brainstem. Its main function is to act as a "sensory relay station," meaning it takes incoming sensory information and appropriately sends it to the cerebral cortex for complex processing. Read below to learn more about how the thalamus works, and comment or DM with topic requests! * * * 1. Let's think about the cerebral cortex as executive board members for the company, Brain Co. This company's goal is to take things that people see, hear, smell, and touch to create personalized experiences. These experiences include things like emotions, thoughts, and physical movements. The board members want to decide how these personalized experiences turn out, but they need a way of managing the overwhelming amount of sensory information presented to their company. . * 2. Brain Co. has several stores that are each specialized in collecting different types of sensory information. To run efficiently, they need a regional manager that will assess the stores' work to decide which cerebral cortex board member would be most interested in this type of information for experience personalization. The thalamus acts as Brain Co.'s regional manager. * 3. In this role, the thalamus has a handy organizational scheme to compartmentalize overwhelming amounts of information. The thalamus organizes all of these different sensory inputs using "nuclei," or bundles of specialized neurons that differ slightly among each nucleus. . * 4. There might be ~50 specialized thalamic nuclei, but the most popular ones are served up in this nigiri. Further, each nucleus deals with potentially more than one type of sensory information, so the most well-established are listed above. . * 5. If you swipe through the next two pictures, you'll see where the thalamus is positioned in the brain (Fig. 2), and Brain Co.'s organizational structure for different types of information laid out in "cortico-basal loops" (Fig. 3). *************************** #science #sushiart #educational #researcher #medicine #md #psychology #phd #nursing #rn #physicianassistant #pa #steam #neuroscience #brainscience #brain

A post shared by The Sushi Scientist (@the_sushi_scientist) on

Il suo hobby della preparazione il sushi è iniziato nel 2017: si era promessa di imparare una nuova attività come buon proposito per l’inizio dell’anno. Dopo aver sviluppato la sua abilità con riso, alghe e ingredienti vari, la ricercatrice ha pensato che le sue due passioni, scienza e sushi, avrebbero potuti essere combinate. Su Instagram, ha iniziato a spiegare argomenti di neuroscienza con gli ingredienti di questo piatto giapponese. Eccone alcuni esempi:

In light of renewed political discord in the US over gun control laws, I thought it would be appropriate to talk about disconnection syndromes. A disconnection syndrome refers to a set of symptoms that occurs after association fibers between two brain regions have been lesioned. These most commonly occur after stroke or from multiple sclerosis.. * Full splitting of the corpus callosum, the fibers that connect the left and right hemispheres, stems from corpus callosotomy. This is a now rare surgical procedure to treat intractable seizures. As a result of this disconnection, the two hemispheres do not communicate with each other, so each has its own unique perception and impulses during the early weeks of recovery. For example, a patient might synchronously reach for a red shirt with his/her right hand and a blue shirt with his/her left hand. * After some time, patients are usually able to reconcile these two competing perceptions and impulses, reporting a unified conscious experience through "external cross talk." In verbalizing their experience out loud, both hemispheres can process the information originally available to only one hemisphere, so that the two can work together. * If external cross talk can help promote neuroplasticity in split-brain patients, maybe it can help promote politicoplasticity in our society. We need to hear each other’s perceptions, not stay trapped in our own hemisphere, to come up with integrated solutions that will create the safest outcomes for us all. ••••••••••••••••••••• #sushi #science #sushiscience #politics #republicans #democrats #sushiart #womenwhoscience #neurology #neurosurgery #neuroscience #food #sushiloveforever #sushitooth

A post shared by The Sushi Scientist (@the_sushi_scientist) on

Nucleic acids are the building blocks of life. You can think of DNA as the genetic blueprints for cell function and growth that stays in the cell, whereas RNA acts like the hardworking construction crew that carrys out these instructions. Read below to learn more about RNA, and DM or comment with any topic requests! * * * * 1. Unlike DNA’s “double helix,” RNA has one strand of nucleotides, a type of organic molecule. Nucleobases pair up and stack on top of each other to form the helical structure. . * 2. Nucleobases in RNA include cytosine, guanine, adenine, and uracil (replaced by thymine in DNA). C/G and A/U bond together as base pairs. The order of these repeating units acts as specific instructions. * 3. RNA is super essential for making proteins, which are present throughout our bodies. For example, proteins form hemoglobin in blood and collagen in skin. . * 4. There are 3 popular types of RNA, with new forms still being discovered. Ribosomal RNA builds the actual site of protein synthesis, called the ribosome. Messenger RNA brings over instructions from DNA blueprints to be carried out in the ribosome. Transfer RNA brings over the raw materials needed to build proteins in the ribosome. * 5. Researchers have started testing the use of RNA subtypes as clinical treatments. If you’re interested in learning more about this topic, check out the @rnatherapeutics FAQs website for a great explanation of how RNA therapies are being tested for conditions like Alzheimer’s disease, diabetes, and viral infections. ••••••••••••••••••••••••••••••••••••••••••••••••• #science #rna #dna #sushi #medicine #genetics #physicianassistant #nursing #studygram #psychology #molecularbiology #neuroscience #foodpost #scientist #womeninscience #education #research #instascience #womeninstem #phd #md #rn #pa

A post shared by The Sushi Scientist (@the_sushi_scientist) on